Mapping Woodland Cover in the Miombo Ecosystem: A Comparison of Machine Learning Classifiers | Land Portal
anal porno swinger porno milf porno sex grup porno zenci porno brazzers olgun porno brazzers

Informações sobre recurso

Date of publication: 
Julho 2014
Resource Language: 
ISBN / Resource ID: 
10.3390/land3020524
License of the resource: 
Copyright details: 
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article.

Miombo woodlands in Southern Africa are experiencing accelerated changes due to natural and anthropogenic disturbances. In order to formulate sustainable woodland management strategies in the Miombo ecosystem, timely and up-to-date land cover information is required. Recent advances in remote sensing technology have improved land cover mapping in tropical evergreen ecosystems. However, woodland cover mapping remains a challenge in the Miombo ecosystem. The objective of the study was to evaluate the performance of decision trees (DT), random forests (RF), and support vector machines (SVM) in the context of improving woodland and non-woodland cover mapping in the Miombo ecosystem in Zimbabwe. We used Multidate Landsat 8 spectral and spatial dependence (Moran’s I) variables to map woodland and non-woodland cover. Results show that RF classifier outperformed the SVM and DT classifiers by 4% and 15%, respectively. The RF importance measures show that multidate Landsat 8 spectral and spatial variables had the greatest influence on class-separability in the study area. Therefore, the RF classifier has potential to improve woodland cover mapping in the Miombo ecosystem.

Autores e editores

Author(s), editor(s), contributor(s): 
Kamusoko, Courage Gamba, Jonah Murakami, Hitomi
Publisher(s): 

Provedor de dados

Compartilhe esta página