Resource information
We studied potential denitrification activity and the underlying denitrifier communities in soils from a semiarid savanna ecosystem of the Kavango region in NE Namibia to help in predicting future changes in N₂O emissions due to continuing changes of land use in this region. Soil type and land use (pristine, fallow, and cultivated soils) influenced physicochemical characteristics of the soils that are relevant to denitrification activity and N₂O fluxes from soils and affected potential denitrification activity. Potential denitrification activity was assessed by using the denitrifier enzyme activity (DEA) assay as a proxy for denitrification activity in the soil. Soil type and land use influenced C and N contents of the soils. Pristine soils that had never been cultivated had a particularly high C content. Cultivation reduced soil C content and the abundance of denitrifiers and changed the composition of the denitrifier communities. DEA was strongly and positively correlated with soil C content and was higher in pristine than in fallow or recently cultivated soils. Soil type and the composition of both the nirK- and nirS-type denitrifier communities also influenced DEA. In contrast, other soil characteristics like N content, C:N ratio, and pH did not predict DEA. These findings suggest that due to greater availability of soil organic matter, and hence a more effective N cycling, the natural semiarid grasslands emit more N₂O than managed lands in Namibia.