Resource information
Climate changes affect the abundance, geographic extent, and floral composition of vegetation, which are reflected in the pollen rain. Sediment cores taken from lakes and peat bogs can be analysed for their pollen content. The fossil pollen records provide information on the temporal changes in climate and palaeo-environments. Although the complexity of the variables influencing vegetation distribution requires a multi-dimensional approach, only a few research projects have used GIS to analyse pollen data. This paper presents a new approach to palynological data analysis by combining GIS and spatial modelling. Eastern Colombia was chosen as a study area owing to the migration of the forest-savanna boundary since the last glacial maximum, and the availability of pollen records. Logistic regression has been used to identify the climatic variables that determine the distribution of savanna and forest in eastern Colombia. These variables were used to create a predictive land-cover model, which was subsequently implemented into a GIS to perform spatial analysis on the results. The palynological data from the study area were incorporated into the GIS. Reconstructed maps of past vegetation distribution by interpolation showed a new approach of regional multi-site data synthesis related to climatic parameters. The logistic regression model resulted in a map with 85.7% predictive accuracy, which is considered useful for the reconstruction of future and past land-cover distributions. The suitability of palynological GIS application depends on the number of pollen sites, the distribution of the pollen sites over the area of interest, and the degree of overlap of the age ranges of the pollen records.