Перейти к основному содержанию

page search

Library Mountain vegetation change quantification using surface landscape metrics in Lancang watershed, China

Mountain vegetation change quantification using surface landscape metrics in Lancang watershed, China

Mountain vegetation change quantification using surface landscape metrics in Lancang watershed, China

Resource information

Date of publication
декабря 2013
Resource Language
ISBN / Resource ID
AGRIS:US201500163274
Pages
49-58

Land cover and vegetation change are among the most important aspects of environmental change. Vegetation change can be quantified by landscape pattern indices (LPI). Landscape indices are routinely calculated using planar land use/land cover (LU/LC) maps, obtained by the projection of a non-flat landscape surface into a two-dimensional Cartesian space. Especially in mountainous areas, quantification on planar maps can lead to underestimation of vegetation and land cover changes. Hoechstetter et al. (2008) developed a method to compute LPIs in a surface structure by calculating landscape patch surface area and surface perimeter from digital elevation models (DEM). As yet there have been no applications of these surface landscape indices on land use/land cover and vegetation change quantification. The objectives of this study are to (1) choose a LPI method (surface metrics pattern analysis or common planimetric metrics pattern analysis) for vegetation change quantification; and (2) employ the selected surface LPI method to assess vegetation pattern change in two mountainous areas of the Lancang watershed, Yunnan Province, China. The results show that the surface approach to estimate changes of class area (CA), mean patch area (MPA), and mean Euclidean Near-Neighbor distance (MENN) may obtain more accurate results for quantifying vegetation change in steep mountain areas. Forest fragmentation increased significantly over time in the two different mountainous study areas. The patches of two land cover classes, (i) agricultural land and (ii) low density forest and tall shrubs, became more aggregated in the northern (temperate) study area. In the southern (tropical) study area, rubber plantations increased considerably in size and became more aggregated.

Share on RLBI navigator
NO

Authors and Publishers

Author(s), editor(s), contributor(s)

Zhang, Zhiming
Van Coillie, Frieke
De Clercq, Eva M.
Ou, Xiaokun
De Wulf, Robert

Publisher(s)
Data Provider
Geographical focus