Resource information
This study uses a series of Landsat images to map the main land-cover types on the Mediterranean island of Lesvos, Greece. We compare a single-year maximum likelihood classification (MLC) with a multi-temporal maximum likelihood classification (MTMLC) approach, with time-series class labels modelled using a first-order hidden Markov model comprising continuous and discrete variables. A rigorous validation scheme shows statistically significant higher accuracy figures for the multi-temporal approach. Land-cover change accuracies were also greatly improved by the proposed methodology: from 46% to 70%. The results show that when only two dates are used, the mapping of land use/cover is unreliable and a large number of the changes identified are due to the individual-year commission and omission errors.