Pasar al contenido principal

page search

Biblioteca Controls on water balance of shallow thermokarst lakes and their relations with catchment characteristics: a multi‐year, landscape‐scale assessment based on water isotope tracers and remote sensing in Old Crow Flats, Yukon (Canada)

Controls on water balance of shallow thermokarst lakes and their relations with catchment characteristics: a multi‐year, landscape‐scale assessment based on water isotope tracers and remote sensing in Old Crow Flats, Yukon (Canada)

Controls on water balance of shallow thermokarst lakes and their relations with catchment characteristics: a multi‐year, landscape‐scale assessment based on water isotope tracers and remote sensing in Old Crow Flats, Yukon (Canada)

Resource information

Date of publication
Diciembre 2014
Resource Language
ISBN / Resource ID
AGRIS:US201400149854
Pages
1585-1603

Many northern lake‐rich regions are undergoing pronounced hydrological change, yet inadequate knowledge of the drivers of these landscape‐scale responses hampers our ability to predict future conditions. We address this challenge in the thermokarst landscape of Old Crow Flats (OCF) using a combination of remote sensing imagery and monitoring of stable isotope compositions of lake waters over three thaw seasons (2007–2009). Quantitative analysis confirmed that the hydrological behavior of lakes is strongly influenced by catchment vegetation and physiography. Catchments of snowmelt‐dominated lakes, typically located in southern peripheral areas of OCF, encompass high proportions of woodland/forest and tall shrub vegetation (mean percent land cover = ca. 60%). These land cover types effectively capture snow and generate abundant snowmelt runoff that offsets lake water evaporation. Rainfall‐dominated lakes that are not strongly influenced by evaporation are typically located in eastern and northern OCF where their catchments have higher proportions of dwarf shrub/herbaceous and sparse vegetation (ca. 45%), as well as surface water (ca. 20%). Evaporation‐dominated lakes, are located in the OCF interior where their catchments are distinguished by substantially higher lake area to catchment area ratios (LA/CA = ca. 29%) compared to low evaporation‐influenced rainfall‐dominated (ca. 10%) and snowmelt‐dominated (ca. 4%) lakes. Lakes whose catchments contain >75% combined dwarf shrub/herbaceous vegetation and surface water are most susceptible to evaporative lake‐level drawdown, especially following periods of low precipitation. Findings indicate that multiple hydrological trajectories are probable in response to climate‐driven changes in precipitation amount and seasonality, vegetation composition, and thermokarst processes. These will likely include a shift to greater snowmelt influence in catchments experiencing expansion of tall shrubs, greater influence from evaporation in catchments having higher proportions of surface water, and an increase in the rate of thermokarst lake expansion and probability of drainage. Local observations suggest that some of these changes are already underway.

Share on RLBI navigator
NO

Authors and Publishers

Author(s), editor(s), contributor(s)

Turner, Kevin W.
Wolfe, Brent B.
Edwards, Thomas W. D.
Lantz, Trevor C.
Hall, Roland I.
Larocque, Guillaume

Publisher(s)
Data Provider
Geographical focus