Passar para o conteúdo principal

page search

Biblioteca Global and Regional Implications of Biome Evolution on the Hydrologic Cycle and Climate in the NCAR Dynamic Vegetation Model

Global and Regional Implications of Biome Evolution on the Hydrologic Cycle and Climate in the NCAR Dynamic Vegetation Model

Global and Regional Implications of Biome Evolution on the Hydrologic Cycle and Climate in the NCAR Dynamic Vegetation Model
Volume 9 Issue 10

Resource information

Date of publication
Setembro 2020
Resource Language
ISBN / Resource ID
10.3390/land9100342
License of the resource

Vegetation influences climate by altering water and energy budgets. With intensifying threats from anthropogenic activities, both terrestrial biomes and climate are expected to change, and the need to understand land–atmosphere interactions will become increasingly crucial. We ran a climate model coupled with a Dynamic Global Vegetation Model (DGVM) to investigate the establishment of terrestrial biomes starting from a bareground scenario and how these biomes influence the climate throughout their evolution. Vegetation reaches quasi-equilibrium after ~350 years, and the vegetation establishment results in global increases in temperature (~2.5 °C), precipitation (~5.5%) and evapotranspiration as well as declines in albedo and sea ice volumes. In high latitude regions, vegetation establishment decreases albedo, causing an increase in global temperatures as well as a northward shift of the Intertropical Convergence Zone (ITCZ). Low latitude tropical afforestation results in greater evapotranspiration and precipitation, and an initial decrease in temperatures due to evaporative cooling.

Share on RLBI navigator
NO

Authors and Publishers

Author(s), editor(s), contributor(s)

Levey, Jessica
Lee, Jung-Eun

Publisher(s)
Data Provider
Geographical focus