Resource information
Los Sensores Remotos se han convertido en los últimos tiempos en una herramienta importante para la planificación territorial, debido a la originalidad metodológica con la cual operan y el amplio espectro de observación de la superficie terrestre. El número de algoritmos disponibles en la literatura científica, permiten tratar individualmente muchas de las coberturas terrestres y caracterizarlas en base a su comportamiento espectral. En el presente trabajo se han aplicado dos métodos de clasificación de imágenes: árboles de decisión o reglas y clasificación no supervisada. También se han calculado índices de vegetación y de agua (NDVI y MNDWI), para identificar las coberturas y generar cartografía temática que sirva como base para posteriores estudios. Además, se ha elaborado la matriz de confusión con el fin de determinar la validez de la clasificación obtenida. Como resultado, se han obtenidos coberturas de vegetación, urbano, cursos y cuerpos de agua, clasificados a partir de técnicas oportunamente mencionadas, que brindan una fiabilidad global del orden del 61%, y si se consideran de manera individual (urbano y cuerpos y cursos de agua), las mismas alcanzan una precisión superior al 70%.