To What Extent Is Hydrologic Connectivity Taken into Account in Catchment Studies in the Lake Tana Basin, Ethiopia? A Review | Land Portal

Información del recurso

Date of publication: 
Enero 2022
Resource Language: 
ISBN / Resource ID: 
LP-midp001691
Copyright details: 
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article

Knowledge of hydrologic connectivity is important to grasp the hydrological response at a basin scale, particularly as changes in connectivity can have a negative effect on the environment. In the context of a changing climate, being able to predict how changes in connectivity will affect runoff and sediment transport is particularly relevant for land-use planning. Many studies on hydrology, geomorphology and climatology have been conducted in the Lake Tana Basin in Ethiopia, which is undergoing rapid development and significant environmental changes. This systematic literature review aims at assessing to what extent the hydrologic connectivity has been taken into account in such research, and to identify research gaps relevant to land and water management. On the Web of Science and Scopus databases, 135 scientific articles covering those topics were identified. Aspects of hydrologic connectivity were mostly implicitly taken into account based on process-based, statistical and descriptive models. Amongst the drivers of changing connectivity, the climate was covered by a large majority of publications (64%). Components of structural hydrologic connectivity were accounted for by considering geomorphology (54%) and soils (47%), and to a lesser extent, hydrography (16%) and geology (12%). Components of functional connectivity were covered by looking at surface water fluxes (61%), sediment fluxes (18%) and subsurface water fluxes (13%). While numerous studies of the Lake Tana Basin accounted for the hydrologic connectivity implicitly, these related predominantly to functional components. The structural components are given less attention, while in the context of a changing climate, better insights into their influence on the hydrologic seem most relevant. Better knowledge of the static aspect of connectivity is particularly important for targeting appropriate soil and water conservation strategies. Being able to explicitly assess the ‘structural connectivity’ is therefore of direct relevance for land management and land-use policy.

Autores y editores

Author(s), editor(s), contributor(s): 

Astuti, Anik J.Annys, SofieDessie, MeketeNyssen, JanDondeyne, Stefaan

Corporate Author(s): 
Publisher(s): 

MDPI AG, a publisher of open-access scientific journals, was spun off from the Molecular Diversity Preservation International organization. It was formally registered by Shu-Kun Lin and Dietrich Rordorf in May 2010 in Basel, Switzerland, and maintains editorial offices in China, Spain and Serbia. MDPI relies primarily on article processing charges to cover the costs of editorial quality control and production of articles. Over 280 universities and institutes have joined the MDPI Institutional Open Access Program; authors from these organizations pay reduced article processing charges.

Proveedor de datos

MDPI AG, a publisher of open-access scientific journals, was spun off from the Molecular Diversity Preservation International organization. It was formally registered by Shu-Kun Lin and Dietrich Rordorf in May 2010 in Basel, Switzerland, and maintains editorial offices in China, Spain and Serbia. MDPI relies primarily on article processing charges to cover the costs of editorial quality control and production of articles. Over 280 universities and institutes have joined the MDPI Institutional Open Access Program; authors from these organizations pay reduced article processing charges.

Comparta esta página