Resource information
Using the UNFCCC as a basis, and the objectives of estimating soil organic carbon (SOC) changes during the period 1900–2100, a spatially explicit database of climate, land cover and soil texture was compiled for a 262,000 km2 region in semi-arid Sudan. The area is characterized by low input cultivation of millet, sorghum and sesamé combined with livestock grazing. By integrating the database with the CENTURY ecosystem model, we were able to estimate historical, current and future pools of SOC as a function of land management and climate. The SOC (upper 20 cm) decrease from 1900 to 2000 was estimated to be 6·8 Mt and the maximum potential carbon sink (SOC increase) for the period 2000 to 2100 was estimated to be 17 Mt. Cropland and grassland lost 293 and 152 t SOC km−2 respectively whereas the savannahs gained 76 t SOC km−2 from 1900 to 2000. The SOC sequestration scenario simulated during 2000–2100 recovered 94, 84 and 75 t km−2 for cropland, grassland and savannah respectively. In addition to climate and soils, cropping intensity, fallow periods, fire frequency and grazing intensity also influence cropland SOC variation. Grassland and savannah SOC variations depend on grazing intensity and fire return interval. Land management may affect future amounts of SOC in semi-arid areas thereby turning them from sources into sinks of carbon. SOC estimates were reasonably consistent with measurements (r2=0·70, n=13).