Skip to main content

page search

Library Biophysical suitability, economic pressure and land-cover change: a global probabilistic approach and insights for REDD+

Biophysical suitability, economic pressure and land-cover change: a global probabilistic approach and insights for REDD+

Biophysical suitability, economic pressure and land-cover change: a global probabilistic approach and insights for REDD+

Resource information

Date of publication
December 2014
Resource Language
ISBN / Resource ID
AGRIS:US201400177981
Pages
129-141

There has been a concerted effort by the international scientific community to understand the multiple causes and patterns of land-cover change to support sustainable land management. Here, we examined biophysical suitability, and a novel integrated index of “Economic Pressure on Land” (EPL) to explain land cover in the year 2000, and estimated the likelihood of future land-cover change through 2050, including protected area effectiveness. Biophysical suitability and EPL explained almost half of the global pattern of land cover (R ²� =� 0.45), increasing to almost two-thirds in areas where a long-term equilibrium is likely to have been reached (e.g. R ²� =� 0.64 in Europe). We identify a high likelihood of future land-cover change in vast areas with relatively lower current and past deforestation (e.g. the Congo Basin). Further, we simulated emissions arising from a “business as usual” and two reducing emissions from deforestation and forest degradation (REDD) scenarios by incorporating data on biomass carbon. As our model incorporates all biome types, it highlights a crucial aspect of the ongoing REDD� +� debate: if restricted to forests, “cross-biome leakage” would severely reduce REDD� +� effectiveness for climate change mitigation. If forests were protected from deforestation yet without measures to tackle the drivers of land-cover change, REDD� +� would only reduce 30� % of total emissions from land-cover change. Fifty-five percent of emissions reductions from forests would be compensated by increased emissions in other biomes. These results suggest that, although REDD� +� remains a very promising mitigation tool, implementation of complementary measures to reduce land demand is necessary to prevent this leakage.

Share on RLBI navigator
NO

Authors and Publishers

Author(s), editor(s), contributor(s)

Strassburg, Bernardo B. N.
Latawiec, Agnieszka E.
Creed, Anna
Nguyen, Nga
Sunnenberg, Gilla
Miles, Lera
Lovett, Andrew
Joppa, Lucas
Ashton, Ralph
Scharlemann, Jörn P. W.
Cronenberger, Felipe
Iribarrem, Alvaro

Publisher(s)
Data Provider
Geographical focus