Skip to main content

page search

Library Dynamics of aggregate destabilization by water in soils under long-term conservation tillage in semiarid Spain

Dynamics of aggregate destabilization by water in soils under long-term conservation tillage in semiarid Spain

Dynamics of aggregate destabilization by water in soils under long-term conservation tillage in semiarid Spain

Resource information

Date of publication
December 2012
Resource Language
ISBN / Resource ID
AGRIS:US201500199341
Pages
34-41

Due to particular soil and climate conditions and inappropriate agricultural practices, Aragon (NE Spain) is a region prone to land degradation by water erosion. For this reason, the adoption of conservation tillage systems has been encouraged as an alternative to preserve soil and water in this region. However, little information concerning soils on which these techniques are applied is available. The main objectives of this study were to assess the effect of long-term no tillage (NT) on water aggregate stability in five different cereal production areas of Aragon and identify the main mechanisms involved on aggregate breakdown. The study was conducted under on-farm conditions where pairs of adjacent fields under NT and conventional tillage (CT) were compared. In all cases, a nearby undisturbed soil under native vegetation was included. Soils were slightly to highly calcareous with medium textures ranging from sandy loam to silty clay loam. Results indicate that NT increased surface aggregate stability with respect to CT systems through lower soil disturbance and higher organic carbon (OC) content at the soil surface (0–5cm depth). Slaking was the dominant disaggregation process of the cultivated soils, representing 40–80% of total soil disruption, and was strongly and negatively affected by aggregate-associated OC. This soil property together with the silt content (weak and positive effect) explained more than 80% of the slaking variation. Swelling and clay dispersion were less frequent processes and their occurrence seemed to be associated with high silt and CaCO₃ contents. This study shows that, under the rainfed conditions of semiarid Aragon, NT reduces the susceptibility of soil surface to crusting and water erosion as compared to CT systems.

Share on RLBI navigator
NO

Authors and Publishers

Author(s), editor(s), contributor(s)

Blanco-Moure, Nuria
Moret-Fernández, David
López, M. Victoria

Publisher(s)
Data Provider
Geographical focus