Location
Wiley-Blackwell is the international scientific, technical, medical, and scholarly publishing business of John Wiley & Sons. It was formed by the merger of John Wiley's Global Scientific, Technical, and Medical business with Blackwell Publishing, after Wiley took over the latter in 2007.[1]
As a learned society publisher, Wiley-Blackwell partners with around 750 societies and associations. It publishes nearly 1,500 peer-reviewed journals and more than 1,500 new books annually in print and online, as well as databases, major reference works, and laboratory protocols. Wiley-Blackwell is based in Hoboken, New Jersey (United States) and has offices in many international locations including Boston, Oxford, Chichester, Berlin, Singapore, Melbourne, Tokyo, and Beijing, among others.
Wiley-Blackwell publishes in a diverse range of academic and professional fields, including in biology, medicine, physical sciences, technology, social science, and the humanities.[2]
Access to more than 1,500 journals, OnlineBooks, lab protocols, electronic major reference works and other online products published by Wiley-Blackwell is available through Wiley Online Library,[3] which replaced the previous platform, Wiley InterScience, in August 2010.
Source: Wikipedia
Members:
Resources
Displaying 376 - 379 of 379Site Productivity, the Key to Crop Productivity
If we call a significant yield increase in single crops a ‘green revolution’, then the first green revolution took place about 10 000–12 000 years ago, when humans started to cultivate land. This was also the beginning of civilization. Since then, humans have increasingly transformed the land and natural vegetation and have risen to be the main creators of the biogeosphere. Today, there is hardly any ecosystem around the globe that has not been influenced by humans.
GIS‐analysis of tree‐line elevation in the Swiss Alps suggests no exposure effect
Counter intuition, an analysis of tree‐line position across the Swiss Alps based on a geographical information system (GIS) with a spatial resolution of 100 m (2.5 million points) revealed no difference in climatic tree‐line altitude with slope exposure. Through step wise discrimination procedures our analysis accounts for anthropogenic tree‐line depression. Any land cover bias affects the frequency of GIS‐points corresponding to tree‐line forests rather than the mean elevation of such points, captured by our analysis.
Vegetation‐environment relationships in Atlantic European calcareous grasslands
The relationship between vegetation and environment was investigated for calcareous grasslands in a region in the west of Spain, France, Britain and Ireland defined by climatic criteria. Vegetation was sampled using objective methods and data collected on soils, land cover, location and management. Climate data were obtained from an available database. Examination of the first axis of vegetation variation as defined by Detrended Correspondence Analysis (DCA) showed a gradient from the Irish and British samples to those from France.
Temporal and spatial changes in a mountainous area of central Italy
In this paper we present an application of aerial remote sensing to the analysis of spatial information in a mountainous area of central Italy by applying texture measures and landscape indices. Land cover data acquired in different time periods are used to calculate measures of landscape pattern and structure at pixel level (tone and texture variables) and patch‐level (landscape indices). Images of the patches from the 1950s, 1980s and 1990s have been derived from the tone‐texture classification of scanned black‐and‐white photographs.