Resource information
The impact of climate change and anthropogenic deforestation on biodiversity is of growing concern worldwide. Disentangling how past anthropogenic and natural factors contributed to current biome distribution is thus a crucial issue to understand their complex interactions on wider time scales and to improve predictions and conservation strategies. This is particularly important in biodiversity hotspots, such as Madagascar, dominated by large open habitats whose origins are increasingly debated. Although a dominant narrative argues that Madagascar was originally entirely covered by woodlands, which were destroyed by humans, a number of recent studies have suggested that past climatic fluctuations played a major role in shaping current biome distributions well before humans arrived. Here, we address the question of the origin of open habitats in the Daraina region in northern Madagascar, using a multiproxy approach combining population genetics modeling and remote-sensing analyses. We show that (i) contrary to most regions of Madagascar, the forest cover in Daraina remained remarkably stable over the past 60 y, and (ii) the golden-crowned sifaka (Propithecus tattersalli), a forest-dwelling lemur, underwent a strong population contraction before the arrival of the first humans, hence excluding an anthropogenic cause. Prehuman Holocene droughts may have led to a significant increase of grasslands and a reduction in the species’ habitat. This contradicts the prevailing narrative that land cover changes are necessarily anthropogenic in Madagascar but does not preclude the later role played by humans in other regions in which recent lemur bottlenecks have been observed.